HYPERBOLIC STRUCTURE ARISING FROM A KNOT INVARIANT

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Structure Arising from a Knot Invariant

We study the knot invariant based on the quantum dilogarithm function. This invariant can be regarded as a non-compact analogue of Kashaev’s invariant, or the colored Jones invariant, and is defined by an integral form. The 3-dimensional picture of our invariant originates from the pentagon identity of the quantum dilogarithm function, and we show that the hyperbolicity consistency conditions i...

متن کامل

Orbit Spaces Arising from Isometric Actions on Hyperbolic Spaces

Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology.  Dimension of is called the cohomogeneity of the action of  on . If is a differentiable manifold  of  cohomogeneity one under the action of  a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...

متن کامل

A Complete Knot Invariant from Contact Homology

We construct an enhanced version of knot contact homology, and show that we can deduce from it the group ring of the knot group together with the peripheral subgroup. In particular, it completely determines a knot up to smooth isotopy. The enhancement consists of the (fully noncommutative) Legendrian contact homology associated to the union of the conormal torus of the knot and a disjoint cotan...

متن کامل

Kashaev’s Invariant and the Volume of a Hyperbolic Knot after Y. Yokota

I follow Y. Yokota to explain how to obtain a tetrahedron decomposition of the complement of a hyperbolic knot and compare it with the asymptotic behavior of Kashaev’s link invariant using the figure-eight knot as an example.

متن کامل

Möbius–invariant Knot Energies

There has been recent interest in knot energies among mathematicians and natural scientists. When discretized, such energies can lead to effective algorithms for recognizing when two curves represent the same knot. These energies may also help model physical systems, such as long protein chains or DNA knots, subject to van der Waals interactions. Knot energies often are normalized to be scalein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modern Physics A

سال: 2001

ISSN: 0217-751X,1793-656X

DOI: 10.1142/s0217751x0100444x